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Abstract—This paper extends the authors previous simulation 

study [1, 2] that predicted the quality of the pseudo plane wave 
of a single offset compact antenna test range (CATR).  In this 
paper, the quiet-zone performance predictions are extended to 
rigorously incorporate the effects of probing the CATR quiet-
zone using arbitrary but known field probes.  This paper 
compares and contrasts results obtained using plane-wave-
spectrum [3] and reaction integral [1, 3] based simulation 
techniques.  This investigation leads to recommendations as to 
the optimal field probe choice and measurement uncertainties.  
The results of these new simulations are presented and discussed. 

Index Terms— Compact Antenna Test Range, Quiet-Zone 
Probing, Field-probe, Reaction Theorem, Plane Wave Spectrum. 

I.  INTRODUCTION 

The single-offset compact antenna test range (CATR) is a 
widely deployed measurement technique for the broadband 
characterization of electrically large antennas at reduced range 
lengths.  The CATR collimates the quasi-spherical wave 
radiated by a low gain feed into a pseudo transverse electric 
and magnetic (TEM) plane-wave.  The coupling of this locally 
plane-wave into the aperture of an antenna under test (AUT) 
creates the classical measured “far-field” pattern.  The 
accuracy of an antenna measured using a CATR is therefore 
primarily determined by the uniformity of the amplitude and 
phase of this illuminating pseudo plane-wave [4]. 

Traditionally, the quality of the pseudo plane wave has 
been assessed by “probing” the amplitude and phase across a 
transverse planar surface with the results being tabulation on, 
typically, a plane-polar grid consisting of a series of linear 
scans in the horizontal, vertical and perhaps inter-carinal 
planes.  A number of workers have utilized portable planar 
near-field antenna test systems to acquire two-dimensional 
plane-rectilinear data sets that can be used to provide far 
greater insight into the behaviour of the field in the quiet-zone 
(QZ) and additionally for the purposes of chamber imaging to 
provide angular image maps of reflections [5].  However, 
when mapping the CATR QZ the finitely large aperture of any 
realized field probe will inevitably affect the mapped fields by 
way of the convolution process between the pseudo plane 
wave of the CATR and the aperture illumination function of 
the scanning near-field probe, cf. [3].  Potentially, such a 
discrepancy can lead to confusion when comparing CATR QZ 

predications obtained from standard computational 
electromagnetic (CEM) models and empirical measurements 
as this “boxcar” field averaging process is not automatically 
incorporated within the numerical simulation.  Several authors 
have undertaken CATR performance prediction modelling [4, 
6, 7] with increasing levels of complexity.  This paper extends 
our recently published comprehensive CATR QZ performance 
prediction software tool [1, 2] to incorporate the directive 
properties of several commonly used field probes so that 
recommendations can be made as to the most appropriate 
probe to use as well as providing estimates for the upper bound 
measurement uncertainty. 

II. CATR QZ SIMULATION 

The field illuminating the CATR offset parabolic reflector 
is typically derived from the assumed known far-field pattern 
of the feed antenna.  This pattern could be derived from CEM 
simulation, as is the case here, or from empirical range 
measurements.  Figure 1 contains a mechanical drawing of the 
WR430 choked cylindrical waveguide feed that was used 
during these simulations with the realised feed shown in Figure 
2.  Here, the feed is assumed nominally vertically polarised 
within its local coordinate system.  When computing CATR 
QZ simulations for a horizontally polarised feed a vector 
isometric rotation [3, 4] can be used to rotate the probe by 90 
about its local z-axis so as to produce equivalent far-field 
patterns for a horizontally polarised probe. 

Figure 3 and 4 respectively illustrate the far-field amplitude 
and phase cardinal and inter-cardinal cuts of the feed antenna 
when resolved onto a Ludwig III co-polar and cross-pol 
polarisation basis [4].  These patterns were obtained from a 
proprietary three-dimensional full-wave CEM solver that used 
the finite difference time domain (FDTD) method. 

The location of the phase centre was determined by means 
of a best-fit parabolic function over the -50    50 angular 
range [5].  The maximum polar angle of 50 was selected as 
this is the maximum angle subtended at the feed by the CATR 
parabolic reflector.  For angles larger than this, the feed pattern 
spills over from the reflector and the feed pattern function for 
angles larger than this are unimportant. 

 



 
Fig. 1. Mechanical model of 
WR430 caTR feed. 

Fig. 2. Realised WR430 CATR 
feed. 
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Fig. 3. Far-field Copolar amplitude 
cuts of feed at 2.6 GHz 

Fig. 4. Far-field copolar phase cuts 
of feed at 2.6 GHz 

Here, the phase centre of this circular feed was determined 
as being at x = y = 0 m and z =-0.1377 m and was found to be 
extremely stable across the operating bandwidth.  The phase 
patterns were compensated for this parabolic phase function, 
which conceptually corresponds to installing the phase centre 
of the feed at the focus of the CATR parabolic reflector.  The 
field illuminating the parabolic reflector can then be 
determined from far-field antenna pattern function by 
reintroducing the (conventionally suppressed) spherical phase 
function and the inverse r term.  The corresponding magnetic 
field, as required by the field propagation algorithm, can be 
computed from the electric field from the TEM far-field 
condition [4]. 

As a result of the requirement to minimise feed induced 
blockage, as described in [1, 2] a single offset reflector CATR 
design is harnessed.  Here, it is assumed that the vertex of the 
reflector paraboloid is coincident with the bottom edge of the 
main reflector.  Thus, the feed is required to be tilted up in 
elevation so that the boresight direction of the feed is 
orientated towards the centre of the reflector surface.  In this 
case, the CATR main reflector is formed from an offset 
parabolic reflector with a focal length of 12’ = 3.6576 m. 

 

 

Fig. 5. Magnitude of illuminating 
electric field 

Fig. 6. Realized CATR reflector. 

Figure 5 shows a false-colour plot of the magnitude of the 
illuminating electric field as radiated by the WR430 feed.  
Here, the boresight direction of the feed is pointing through the 

geometric centre of the reflector which corresponds to an 
elevation tilt angle of approximately 28.  Although this is a 
non-optimum illumination angle, in actuality a larger elevation 
angles is used to improve the CATR QZ amplitude taper by 
compensating for the spherical loss factor, 28was used for the 
sake of consistency with prior simulations [1, 2].  Within 
Figure 5, the white space corresponds to regions where the 
reflectivity of the reflector is zero.  Figure 6 shows an image of 
the reflector once installed within the test chamber. 

The current element method [1, 2, 8] replaces fields with 
an equivalent surface current density Js which is used as an 
equivalent source to the original fields.  The surface current 
density across the surface of the reflector can be obtained from 
the incident magnetic fields and the surface unit normal using, 


ris HnHnJ  ˆ2ˆ2  

The surface current density approximation for Js (as 
embodied by the above expression) is known as the physical-
optics approximation and allows for the computation of valid 
fields outside of the deep shadow region.  The infinitesimal 
fields radiated by an electric current element can be obtained 
from the vector potential and the free-space Green’s function 
[1, 8], 

   


 sJ
da

PHd
4

 

This is an exact equation.  When the field point is more 
than a few wavelengths from the radiating elemental source, 
the corresponding elemental electric fields can be obtained 
conveniently from the elemental magnetic fields using the far-
field TEM condition using, 

  uHdZEd ˆ0   

Thus, both the electric and magnetic fields can be obtained 
from the elemental fields by integrating across the surface of 
the parabolic reflector.  In practice, for the case of a CATR 
with a QZ located at a distance z that is larger than the focal 
length of the reflector, the difference between the electric field 
as computed using the TEM condition and the exact formula is 
typically on the order of the limit of double precision 
arithmetic with this error being negligible.  Figures 7 and 8 
contain respectively false colour plots of the amplitude and 
phase patterns of the horizontally polarised electric field 
components of the pseudo-plane wave over the surface of a 
transverse plane located down-range at z = 1.8f where f is the 
focal length of the CATR reflector.  Figures 7, 8, 9 and 10 
contain the Ex and Ey polarised amplitude and phase patterns 
for the horizontally polarised feed case.  Although not shown, 
the equivalent magnetic fields were also computed.  When 
interpreting these plots it is important to recognise that these 
are the fields one would measure if an infinitesimal electric 
(i.e. Hertzian) dipole probe were used to sample the QZ fields 
[3, 4].  This is in agreement with theory and standard CEM 
modelling tools.  In practice, it is not possible to use an 
infinitesimal current element as a field probe and the following 
section examines how these patterns can be modified to 



include the effects of an finitely large, i.e. directive, field 
probe. 

 

 

Fig. 7. Ex polarized QZ electric 
field amplitude. 

Fig. 8. Ex polarised QZ electric 
field phase. 

 

Fig. 9. Ey polarized QZ electric 
field amplitude 

Fig. 10. Ey polarized QZ electric 
field phase 

III. CATR QZ PROBIBNG SIMULATION USING  
REACTION INTEGRAL BASED METHOD 

CATR QZ probing is usually accomplished by translating a 
field probe across a plane that is transverse to the z-axis of the 
CATR at several positions down-range.  An example of a 
CATR QZ field probe can be seen presented in Figure 11.  
Here, the electrically small field probe can be seen positioned 
at the limit of travel of the 6’ linear translation stage. 
Generally, pyramidal horns, e.g. circa 16 dBi standard gain 
horns (SGH) [4, 6], are used as CATR QZ probes as they have 
excellent polarisation purity, are easy to align, have some gain 
and therefore provide some immunity from reflections from 
the side and back walls of the anechoic chamber.  An 
alternative choice of field probe is a circa 6 dBi gain open-
ended rectangular waveguide probe (OEWG) [4]. 

Each of these field probes satisfy the primary requirements 
for a probe.  These are, 1) time invariant gain and mechanical 
rigidity, 2) no pattern nulls in the forward hemisphere 
corresponding to a low directivity (as pattern nulls correspond 
to angles in which the probe is insensitive, i.e. blind, to 
incoming fields), 3) wide bandwidth minimising the necessity 
to use a multitude of probes to span a frequency range, 4) low 
scattering cross-section and reflection coefficient – i.e. well 
matched with a small return loss (to minimise the magnitude of 
the multiple reflections that are set up between the near-field 
probe and the AUT), 5) good polarisation purity, 6) good front 
to back ratio (so as to minimise sensitivity to probe placing and 
multiple reflections). 

The probe used in CATR quiet-zone scanning procedure is 
itself an antenna and as such has its own antenna pattern.  This 
has the effect of contributing a systematic error in the form of a 

singular mapping on top of the actual pseudo plane-wave 
generated by the CATR. 

 

 
Fig. 11. CATR QZ field being probed using a linear translation stage mounted 
on AUT positioner uging a plane-polar acquisition scheme. 

Thus the measured data is in fact the convolution of the 
CATR and probe responses.  Furthermore, the clear difference 
in the electrical size of aperture of these two antennas and their 
directive properties and spatial filtering can be expected to 
result in some differences being observed between the probe 
measured QZ fields with the effects being quantifiable through 
an application of the reaction theorem which is a well-known 
method for analyzing general coupling problems [3].  This 
theorem states that, provided the electric and magnetic field 
vectors (E1, H1) and (E2, H2) are of the same frequency and are 
monochromatic, then the mutual impedance, Z21, between two 
radiators, i.e. antennas 1 and 2, in the environment described 
by ,  can be expressed in terms of a surface integration [3], 

   
2

 ˆ
1

2112
221111
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21

S

dsnHEHE
III

V
Z  

Here, n is taken to denote the outward pointing surface unit 
normal.  The subscript 1 denotes parameters associated with 
antenna 1 whilst the subscript 2 denotes quantities associated 
with antenna 2, where the surface of integration encloses 
antenna 2, but not antenna 1.  Here, I11 is the terminal current 
of antenna 1 when it transmits and similarly, I22 is the terminal 
current of antenna 2 when it transmits.  Note that this integral 
does not compute transferred power as there are no conjugates 
present and as such, crucially, phase information is preserved.  
Here, the fields E1 and H1 are used to denote the CATR QZ 
whilst fields E2 and H2 denote fields associated with the QZ 
field probe.  From reciprocity, the mutual impedance, Z12 = 
Z21, is related to the coupling between the two antennas.  
Clearly the mutual impedance will also be a function of the 
displacement between the antennas, their relative orientations, 
their directivities and their respective polarization properties.  
Once the impedance matrix is populated, this can be inverted 
to obtain the admittance matrix whereupon the required 
scattering matrix can be computed [3].  The elements S1,2 = S2,1 
of this two port scattering matrix are the complex transmission 
coefficients for the coupled antenna system which represent a 



single point in the quiet-zone probing measurement.  Although 
the integration can be performed across any convenient free-
space closed surface, in this application integrating across the 
planar aperture of the OEWG or SGH antenna is perhaps the 
most computationally efficient strategy.  Aperture fields can be 
obtained from analytical models [4] as in this case, from CEM 
simulation or from measurement with the choice being 
determined by the accuracy needed and the available 
information. 

Figure 12 presents a comparison of the CATR QZ 
amplitude horizontal cut as obtained using an infinitesimal 
electric dipole (red trace) and an equivalent cut as obtained by 
using an OEWG probe (blue trace).  A measure of the 
similarity between the respective measurements is provided by 
the equivalent multipath level (EMPL) [3] (magenta trace).  
From inspection of Figures 12 and 13, it is evident that the 
ideal (dipole) and OEWG measurements are in very good 
agreement, both in amplitude and phase for the horizontal cuts.  
This is further confirmed by the EMPL level that is at or below 
-60 dB right across the pattern peak, which corresponds to the 
useable QZ region. 
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Fig. 12. Horizontal amplitude cut 
using dipole and OEWG field probe. 

Fig. 13. Horizontal phase cut using 
dipole and OEWG field probe. 
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Dipole Probe

SGH Probe

Fig. 14. Horizontal amplitude cut 
using dipole and SGH probe 

Fig. 15. Horizontal phase cut using 
dipole and SGH probe 

Figures 14 and 15 contain equivalent figures for the case 
where a SGH has been used as a pyramidal horn probe.  Here 
it is evident from inspection of the amplitude and phase results 
that the high spatial frequency information within the QZ plots 
has been attenuated with the larger aperture effectively 
averaging out the measured response and thereby reducing the 
observed amplitude and peak-to-peak phase ripple.  This is 
further confirmed by the circa 15 dB increase in the EMPL 
level between dipole probe and horn probe. Although not 
shown due to lack of space, equivalent results for the vertical 
cut exhibited similar phenomena.  This probe dependent QZ is 
a well-known measurement effect but for the first time it has 
been possible to bound the SGH upper-bound measurement 
uncertainty and to provide tools necessary for verifying the 
appropriate choice of field probes. 

IV. CATR QZ PROBIBNG SIMULATION USING  
PLANE WAVE SPECTRUM BASED METHOD 

An alternative way to compute the coupling between two 
antennas is to use the planar transmission formula that forms 
the basis of conventional planar near-field antenna 
measurement method [3, 9].  Ordinarily, the planar 
transmission formula is inverted to enable the fields 
transmitted by the antenna under test (AUT) to be 
compensated for the properties of the scanning near-field 
probe.  Here, the converse operation is utilised.  That is to say 
in this case the CATR is considered to be the “antenna under 
test” and this pattern is convolved with that of the field probe, 
which in this case is represented by either the OEWG probe or 
the SGH.  This can be expressed in matrix form as [3], 

        AMP
j

S 


 

Here, S denotes the received probe plane-wave spectrum 
(PWS), P contains the probe ‘B’ and ‘C’ angular spectrum, M 
the coordinate transformation and A the AUT plane wave 
spectral components where in this case the AUT comprises the 
offset reflector CATR.  The relationship between the conjugate 
spatial and spectral quantities can be expressed in terms of a 
Fourier transform as [3, 4], 

       








 dxdyezyxEzkkF ykxkj
TyxT

yx0,,0,,  

Conversely, the propagating electric field everywhere in 
the forward half space can be obtained from the tangential 
angular spectra as, [3, 4], 

        








 yx
zkykxkj

yxTT dkdkekkFzyxE zyx,
4

1
,,

2
 

Thus, equation (6) can be used to compute the CATR QZ 
angular spectrum, equation (5) can be used to compute the 
coupling product, and equation (7) can be used to obtain the 
probed CATR quiet-zone fields.  As only propagating field are 
considered, as we may assume that the quiet-zone is more than 
a few wavelengths from the CATR reflector then the limits of 
integration may be collapsed so that only homogeneous plane 
wave mode coefficients are considered where 2

0
22 kkk yx  . 

Hence, providing the CATR quiet-zone fields are not too 
truncated so that resulting spectral leakage in the spectral 
domain does not disturb the processed results too greatly, cf. 
[3], then the simulated probed fields can be computed 
efficiently and compared directly with those acquired either 
during a CATR QZ field-measurement or with those results 
presented in the preceding section.  In general, we are free to 
compute our CATR quiet-zone over a plane of any finite 
extent and so in principal truncation is not a limiting factor.  
However, if for the purposes of efficiency the extent of the 
sampling plane is reduced then windowing techniques can be 
utilised to successfully compensate for this [3] providing only 
that some small degree of over-scanning is permissible. 



Thus, by harnessing the PWS method set-out above CATR 
QZ results that are equivalent to those presented within the 
previous section were obtained.  Figure 16 contains an 
equivalent plot only here the coupling was computed using the 
alternative PWS method.  As can be seen the plots shown in 
Figure 16 and 14 are very similar with even the EMPL traces 
being in very close agreement.  Figure 15 contains a 
comparison of the CATR QZ phase plot for the case where an 
infinitesimal Hertzian dipole probe is used, red trace, and a 
SGH, blue trace.  Here, the coupling was computed using the 
reaction integral method. 
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Fig. 16. PWS Method: Horizontal 
amplitude cut using dipole and SGH 
probe. 

Fig. 17. PWS Method: Horizontal 
phase cut using dipole and SGH 
probe. 

Again it is clear from inspection of these plots that the high 
spatial frequency ripple that is evident in the Hertzian dipole 
probed fields is largely absent from the SGH field probe 
simulation.  This is in close agreement with what is found in 
practice and lends further confidence to the reliability of the 
method.  Figure 17 contains an equivalent phase plot only here 
the PWS method was used to compute the coupling.  Again the 
agreement that is attained between the respective phase plots, 
i.e., Figures 15 and 17 is very encouraging as the same result is 
obtained when using entirely different simulation 
methodologies. 

Although not shown as a consequence of available space, 
equivalent vertical cuts of the quiet-zone cuts were also 
simulated and the degree of agreement in amplitude and phase 
plots were similar. 

V. SUMMARY AND CONCLUSIONS 

This paper details the CEM simulation of the measurement 
of a CATR QZ using arbitrary but known near-field probes 

using two completely different simulation techniques.  The 
verification of these simulation techniques is achieved through 
comparison of predicted results.  Both the PWS based and 
reaction integral modelling techniques presented above 
comprise very general treatments of the CATR quiet-zone 
probing procedure.  As such these include effects associated 
with cross polarisation and polarisation purity of the respective 
scanning field probes.  An added benefit of the simulation 
techniques is that it is possible to utilise measured or simulated 
patterns for the field probe which further enhance the 
generality of the process.  As an added benefit, the PWS 
coupling method also provides, inherently, the ability to 
simulate probed CATR QZ fields across a surface that is 
transverse to the range boresight direction at other z-axis 
positions down-range.  This is by virtue of the differential 
phase change that can be applied to the plane wave spectra 
prior to performing the numerical integration to reconstruct the 
spatial field components. 
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